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The derivation of a semiclassical surface hopping procedure from a formally exact solution of the Schrodinger
equation is discussed. The fact that the derivation proceeds from an exact solution guarantees that all phase
terms are completely and accurately included. Numerical evidence shows the method to be highly accurate.
A Monte Carlo implementation of this method is considered, and recent work to significantly improve the
statistical accuracy of the Monte Carlo approach is discussed.

I. Introduction

Quantum mechanical effects can play an important role in
the dynamics of molecular systems. However, the numerical
applications of quantum mechanics to dynamical problems are
feasible only for systems with a small number of degrees of
freedom. Semiclassical methods1-12 provide a computationally
attractive approximation to fully quantum calculations, because
they use information obtained from classical trajectories to
construct approximate quantum wave functions, correlation
functions, and transition probabilities.

The coordinates in molecular systems are commonly divided
into a fast setr and a slow setR. The fast set usually contains
the electronic coordinates, and the coordinates of the nuclei,
R, make up the slow set. In the Born-Oppenheimer (BO) or
adiabatic approximation, the wave functions and energies for
the fast subsystem are evaluated at fixed values for the slow
degrees of freedom.13 The BO Schrodinger equation is

The HamiltonianHf is the sum of the kinetic energy for the
fast degrees of freedom,Tf, and the potential energy for the
systemV(r ,R). Within the BO approximation, the energyEn

f(R)
serves as the potential energyWn(R) for the nuclear motion,
and the slow system HamiltonianHs ) Ts + Wn(R) governs
the motion of the nuclei, whereTs is the slow variable kinetic
energy operator.

Semiclassical methods1-12 are widely used in modeling
physical systems of experimental interest when only one BO
electronic state is important. However, many important processes
in experimental systems involve transitions between BO states.
A variety of semiclassical methods have been proposed for
handling nonadiabatic transitions between BO states.14-54 These
approaches often describe the electronic wave function as a
linear combination of the BO states,

One approach is to evaluatecj(t) using the time dependent
Schrodinger equation for the fast degrees of freedom as the slow
degrees of freedom travel along classical trajectories calculated

using the Hellmann-Feynman force,F ) -〈Ψf|∂Hf/∂R|Ψf〉,
where〈...〉 indicates integration overr .14-18 Other approaches,
which are referred to as surface hopping procedures, allow the
trajectories employed in the construction of the semiclassical
wave functions and/or transition probabilities to take abrupt hops
from one adiabatic energy surface to another.19-42 Other
methods express the coefficients in eq 2 ascj(t) ) [nj(t)]1/2

exp[-iqj(t)] and treatnj(t) and qj(t) as canonically conjugate
action/angle variables that are added to the phase space of the
slow coordinatesR and momentaP. Classical trajectories are
run in this enlarged phase space, and semiclassical wave
functions and/or transition probabilities are constructed.43-46

In this article, we focus on work in our group using a
semiclassical surface hopping approach.22-25 The derivation of
a formally exact solution to the nonadiabatic time independent
Schrodinger equation (TISE) is discussed in section II. The
phase and prefactor associated with each term in this wave
function expansion have the form expected for semiclassical
wave functions, and each term corresponds to an integration
over trajectories with a certain number of hops between quantum
states. This wave function expansion can be generalized for
multidimensional systems and for time dependent problems as
a semiclassical approximation. The important feature in this
semiclassical development is the careful treatment of the phases
of all the terms, which are obtained starting from the formally
exact solution to the Schrodinger equation. This guarantees that
all phases are treated exactly and phase interference between
contributions from different trajectories is handled accurately.

The surface hopping expansions developed for the wave
function and the time dependent propagator are “primitive” wave
functions and propagators, because their semiclassical prefactors
diverge at caustic points along the classical trajectories. Cor-
responding uniform versions of these surface hopping expan-
sions, which do not have these divergences, are also discussed.
The uniform propagator is an initial value representation (IVR),
because it is expressed as an integration over all possible initial
phase space points for the surface hopping trajectories. An IVR
has the advantage that it avoids the difficult search required by
the double ended boundary condition that must be satisfied by
the trajectories contributing to the primitive propagator.

In section III, the Monte Carlo implementations of these
surface hopping procedures are discussed. The Monte Carlo

H fæn(r ;R) ) En
f(R) æn(r ′R) (1)

Ψf(r ,R,t) ) ∑
n

cn(t) æn(r ,R) (2)
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procedure assigns a probability for hopping or not hopping for
each step along the trajectory and chooses between these options.
Methods for improving the statistical convergence of the Monte
Carlo procedure are considered. Step probabilities are developed
that include the effects of multiple hops within the step. This
allows for the use of larger steps, results in fewer hopping
trajectories, and reduces the interference between these trajec-
tories. Another method for the improvement of the Monte Carlo
procedure utilizes the flexibility in the choice of the representa-
tion for the quantum states of the fast subsystem to reduce the
integrated coupling between the states, thereby reducing the
importance of multihop trajectories. Tests of these methods are
discussed. It is found that the surface hopping method is
extremely accurate and that the use of these procedures results
in a large reduction in the computational time required for a
given level of statistical accuracy.

II. Semiclassical Surface Hopping Method

We begin with a derivation of a formally exact solution to
the one-dimensional multistate time independent Schrodinger
equation (TISE). For simplicity, the development here is limited
to the two state case. The system can be defined in the diabatic
representation by the two state energies,V11

d(X) and V22
d(X),

and the diabatic coupling,V12
d(X), whereX is the variable for

the slow subsystem. The quantum states for the fast subsystem
in the adiabatic representation are given the terms of diabatic
states,æ1

d andæ2
d,

where the diabatic states,æ1
d and æ2

d, are taken to be
independent ofX and the value ofθ(X) is determined by the
condition that the potential energy matrix is diagonal in the
adiabatic or BO representation. The elements of this diagonal
matrix, W1(X) andW2(X), are the adiabatic state energies, and
Wi(X) serves as the potential energy for the motion of the slow
coordinate when the system is in adiabatic stateæi. Figure 1
showsV11

d(X), V22
d(X), andV12

d(X) for a model curve crossing
problem. Suppose that a particle is traveling on surfaceW1 in
the positive direction from large negative values ofX with
energyE. The particle can leave the interaction region traveling
in either direction on either surface. We are interested in
evaluating the wave function for this system and the probability
of each of these four possible outcomes.

This problem can be replaced by a piecewise constant
problem22 by partitioning theX-axis into intervals of width∆X,
with X0, X1, ...,XN labeling the interval boundaries, and replacing
W1(X), W2(X), andθ(X) with constant values in each interval
and forX < X0 andX > XN. This results in discontinuities in
W1, W2, andθ at eachXj. The incoming particle onW1 with
massmand energyE is described by the wave functionæ1 exp-
(ik1X), wherekj ) Pj/p andPj ) [2m(E - Wj)]1/2. When this
incoming wave function encounters the discontinuity inW1, W2,
andθ atX0, it splits into four particle fluxes moving away from
X0. These four fluxes correspond to reflected fluxes on each of
the two surfaces and transmitted (into the next interval) fluxes
on each of the two surfaces, as described in Figure 2. These
fluxes are each described by wave functions of the typeæjCj

(()

exp((ikjX), where+ (-) is used for the transmitted (reflected)
flux. TheCj

(() are determined by the requirement that the wave
function and its derivative must be continuous at the discontinu-
ity.22 Each transmitted flux travels across the next interval until
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Figure 1. Diabatic potential energy surfaces for a model curve crossing
problems are plotted. The potential surfaces are given byV11 ) -V22

) -tanh(X - 2) tanh(X + 2) andV12 ) 0.1 exp(-X2/20).

Figure 2. Incoming wave function, denoted by the arrow pointing
towardX0, is split by the discontinuity atX0 into four outgoing wave
functions, denoted by the arrows pointing away fromX0. The two
transmitted (reflected) outgoing wave functions are labeledt1 and t2
(r1 and r2), corresponding to the potential surfacesW1 andW2.

(æ1(x)
æ2(x) )) ( cosθ sin θ

- sin θ cosθ )(æ1
d

æ2
d) (3)
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it reaches the discontinuity atX1. At this point, it splits into
two transmitted and two reflected fluxes, and the coefficient
Cj

(() for each new flux is obtained as before. These new fluxes
then travel across intervals and are split into four new fluxes
when the next discontinuity is encountered, and so on. The sum
of all possible contributions of this sort at a pointX on surface
Wj gives the value of the wave function in that state atX. This
wave function satisfies the TISE for the piecewise constant
problem. As the width of the partition of theX axis is made
smaller, this wave function approaches the exact solution to the
original problem with continuousW1(X), W2(X), andθ(X).22

In the piecewise constant problem, the reflection and trans-
mission coefficients,Cj

((), depend on the values ofθ, P1, and
P2 on both sides of the interval boundary. In the limit of small
∆X, the coefficient for transmission with no change in adiabatic
state is zeroth order in the small changes across the boundary,
∆θ, ∆P1, and∆P2, whereas the coefficients for transmission
with a hop to the other adiabatic state and for reflection onto
either adiabatic state are first order in∆θ, ∆P1, and∆P2. For
this reason, transmissions with hop and all reflections are
considered first-order events, and a path withn first-order events
is considered annth-order path. The zeroth-order path, corre-
sponding to transmission without hop at each boundary, gives
rise to the contribution22 ψ0 ) æ1ψw1(Xi,X) in the∆X f 0 limit
whereψw1(Xi,X) is the semiclassical WKB wave function for
the potentialW1(X)

andXi is an arbitrary point in the incoming asymptotic (X , 0)
region.

The contribution from all first-order paths with a transmission
with hop at one discontinuity,Xj (and transmission with no hop
at all other boundaries) is obtained by summing over the
different Xj. In the ∆X f 0 limit, this sum becomes an
integration over the position of hop, and this contribution is
given by

AT ) [P1(Xi)/P2(X)]1/2 is the WKB prefactor for the trajectory
that travels on initial adiabatic surface,W1, from Xi to X1, hops
to W2 at X1, and then travels fromX1 to X on W2, andST is the
WKB phase function for this hopping trajectory,

The transmission coefficient in eq 5 is given by

The contribution from all paths with a single reflection with no
hop and the contribution from all paths with a single reflection
with a hop are obtained analogously to eq 5.

The contributions from all higher order paths can also be
obtained in this manner. The contribution from all paths with
two transmission with hop events is given by

whereτ21 ) -τ12. The prefactorATT and phase functionSTT

are again given by WKB-like expressions for the trajectory that
hops fromW1 to W2 at X1 and from W2 to W1 at X2. The
contribution with any sequence of any number of nonclassical
events is obtained in the same way. The generalization of the
two state case to any number of quantum states is straightfor-
ward.22 The expansion obtained by summing all contributions
of this type is a formallyexactsolution of the multistate TISE
in one dimension.

The reflection without hop terms, which are independent of
the nonadiabatic coupling, provide corrections to the semiclas-
sical approximation. If all terms containing reflections without
hops are neglected in the wave function expansion, then the
resulting wave function satisfies the Schrodinger equation to
all orders in the nonadiabatic coupling and to the same (first)
order inp as is the case with the WKB wave function for the
single surface problem.23 Because the surface hopping expan-
sion, including reflections without hops, provides the exact
quantum wave function, the semiclassical approximation ob-
tained by neglecting reflection without hop terms incorporates
the complete and correct phase and amplitude for every possible
trajectory. This is important, because many surface hopping
procedures fail to accurately account for all phase interference
effects.

This semiclassical surface hopping expansion can be general-
ized for multidimensional problems.23 In multidimensional case,
the nonadiabatic couplingη21 ) 〈æ2|∇æ1〉 ) ∇θ is a vector,
where〈...〉 indicates integration over the quantum coordinates.
The component of the momentum parallel to the nonadiabatic
coupling vector changes at each hop between adiabatic surfaces
so that energy is conserved. The multisurface wave function,
ψ(R), is given by the sum of the contributions from all hopping
and nonhopping trajectories that obey the appropriate initial
conditions and end atR. For instance, if the wave function
describes colliding structureless particles with energyE, then
the trajectories must have momentumP in the incoming region,
whereP is the appropriate relative momentum of the colliding
particles. The transition amplitude in the multidimensional case
is similar to that in the one-dimensional case given by eq 7,
except that dθ/dX is replaced with the magnitude of∇θ
multiplied by the sign ofP1‚∇θ, and the one-dimensional
momentaP1 and P2 are replaced with the components of the
vectorsP1 andP2 parallel toη21.

Every term in the one-dimensional surface hopping expansion
diverges at turning points in the classical motion, because the
prefactors have aP-1/2 dependence. The divergence of the
prefactor at a turning point (or a caustic in the multidimensioinal
case) results in the usual semiclassical-π/2 addition to the
phase.6 An alternative uniform semiclassical surface hopping
expansion of the wave function has recently been derived by
generalizing the globally uniform single surface semiclassical
wave function7,8 to the multisurface case.55 This global uniform
wave function does not diverge at caustic points. It should be
noted that, because these primitive and uniform semiclassical
surface hopping wave function expansions are constructed using
information gathered from classical trajectories, they cannot
account for tunneling without additional features, as is com-
monly the case with semiclassical methods.

Numerical studies have shown that neglecting contributions
involving the reflections with hops while keeping the contribu-
tions from transmission with hop terms generally results in very
good accuracy.22-25 The semiclassical and quantum transition
probabilities are compared in Table 1 for a one-dimensional
curve crossing problem.22 The diabatic potential surfaces are
shown in Figure 3. The initial state is the state with lower energy

ψwj(Xi,X) ) xPj(Xi)

Pj(X)
exp[ i

p
∫Xi

X
Pj(X1) dx1] (4)

ψT ) æ2∫Xi

X
τ12(X1)ATeiST/p dX1 (5)

ST ) ∫Xi

X1P1(y) dy + ∫X1

X
P2(y) dy (6)

τ12 ) -
(P1 + P2)

2(P1P2)
1/2

dθ
dX

(7)

ψTT ) æ1∫Xi

X
dX1 ∫X1

X
dX2 τ12(X1) τ21(X2) ATTeiSTT/p (8)
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at largeX, and the other state is the final state. The semiclassical
probabilities are evaluated using the primitive surface hopping
expansion ignoring reflection with hop terms. The particle mass
is taken to be the mass of a proton and atomic units are
employed. The agreement between the semiclassical and
quantum transition probabilities is excellent over the entire range
of energies considered.

Only solutions to the TISE have been considered up to this
point. A similar semiclassical surface hopping expansion can
be developed that satisfies the time dependent Schrodinger
equation (TDSE) to first order inp and all orders in the
nonadiabatic coupling.24 The propagator for the entire system
becomes a matrix in the adiabatic state representation

whereæa andæb are adiabatic quantum states, and〈...〉 indicates
integration over ther1 andr2 quantum variables. The semiclas-
sical surface hopping expansion24 expressesKab(R1,R2,t) as the
sum of contributions from all energy conserving paths that start
on surfacea at R1 and end on surfaceb at R2 in time t. These
paths can include any number of hops, and they obey the
classical equations of motion between hops. As before, the
component of the momentum parallel to the nonadiabatic
coupling vector is altered at each hop to conserve energy. The
zero hop contribution toKaa(R1,R2,t) is the well-known single
surface semiclassical propagator,1 and the expansion has a form
analogous the surface hopping expansion for the time indepen-
dent wave function.

As is the case with the propagator for single surface problems,
the magnitude of the propagator diverges at caustics along the
trajectory. It also shares with the single surface propagator the
need to search for all trajectories that satisfy specific boundary
conditions. In the multisurface case, this search is for all hopping
and nonhopping trajectories that start atR1 and end atR2 at a
time t later. These problematic issues can be avoided by casting
the multisurface propagator as an initial value representation

(IVR).1,4,5,7First, consider the single surface case. The primitive
single surface propagator has the form

where the sum is over all classical trajectories starting atR1

and ending atR2 at time t. The phase function is the classical
action for the trajectory

whereT is the kinetic energy andV is the potential energy.
The prefactorA can be expressed as

Alternatively, the IVR version of the single surface propagator
is expressed as a integration over the initial phase space point
{R0, P0} of the classical trajectories1,4,5

whered is the dimensionality ofR and

is a Gaussian function with average positionRt and average
momentumPt. The constantγ determines the width of the
Gaussian. The phase functionS is again the classical action
evaluated along the trajectory. The prefactor is given by5

Equation 13 expresses the time dependence of the propagator
in terms of fixed width Gaussian functions that travel along
classical trajectories. The specific IVR given by eqs 13-15 has
been found to be a very useful semiclassical approximation to
the full quantum propagator and is widely employed.

The generalization of the IVR propagator for multistate
problems has the form25

whereKIVR,0(R1,R2,t) is the single surface IVR propagator. The
nth term in the summation in eq 16 contains contributions from
trajectories withn hops between adiabatic surfaces. It isnth
order in the nonadiabatic coupling. Neglecting reflection terms
again, the first-order term is

Figure 3. Diabatic potential energy surfacesV11 ) 3 exp(-3X), V22

) 3 exp(-3X) - exp(-2X) + 0.1, andV12 ) 0.01{1 - tanh[2(X -
2)]} are plotted.

TABLE 1: Comparison of Semiclassical (SC) and Quantum
(Q) Transition Probabilities for the Model Problem
Corresponding to the Diabatic Potential Energy Surfaces
That Are Plotted in Figure 3

E (au) p12(SC) p12(Q)

0.25 0.981 0.953
0.50 0.661 0.659
0.75 0.391 0.389
1.00 0.130 0.131
1.50 0.764 0.765
2.00 0.032 0.032
3.00 0.576 0.575
5.00 0.00002 0.00002

10.0 0.079 0.079

Kab(R1,R2,t) ) 〈æa(r1,R2)|K(r1,R1,r2,R2,t)|æb(r2,R2)〉
(9)

K(R1,R2,t) ) ∑
j

Aje
iSj/p (10)

S(R1,R2,t) ) ∫0

t
(T - V) dt1 (11)

A(R1,R2,t) ) [(-2πip)-d| ∂
2S

∂R1∂R2
|]1/2

(12)

KIVR(R1,R2,t) ) 1

(2πp)d∫dR0 dP0 g(R1;R0,P0)*

g(R2;Rt,P1)CeiS/p (13)

g(R;R1,Pt) ) (2γ
π )d/4

exp[-γ(R - Rt)
2 + i

p
Pt‚(R - Rt)]

(14)

C(R0,P0,t) )

|12[∂Rt

∂R0
+

∂Pt

∂P0
- 2iγp

∂Rt

∂P0
- 2iγp

∂Rt

∂P0
- 1

2iγp

∂Pt

∂R0
]|1/2

(15)

Kab
IVR(R1,R2,t) ) KIVR,0(R1,R2,t)δab + ∑

n)1

∞

Kab
IVR,n (R1,R2,t)

(16)

Kab
IVR,1(R1,R2,t) ) 1

(2πp)d∫dR0 dP0 ∫0

t
dt1 τab

IVR(t1)

g(R1;R0,P0)*g(R2;Rt,Pt)CeiS/p (17)
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Equation 17 has a form similar to that of eq 13 with the addition
of the integration over the time of the hop,t1. Equation 17
expresses the first-order (in the nonadiabatic coupling) contribu-
tion to the propagator as an integration over the initial phase
space points of single hop trajectories. Each trajectory evolves
on the initial adiabatic surface,Wa(R), according to the classical
equations of motion until timet1. At t1, it undergoes a hop to
Wb(R) and then continues on this surface. The component of
the momentum parallel to the nonadiabatic coupling vector
changes so that the energy is unchanged by the hop. The hop
also results in changes in the stability matrixes that appear in
the prefactor, eq 15.25,56 The amplitude for the hop at t1 in eq
17 is given by25

wherem is the mass,ηab is the magnitude of the vectorηab

times the sign ofPa‚ηab, Ca is the value of the prefactor att1
before the hop, andCb is its value att1 after the hop. This
equation assumes a single mass in the problem. If this is not
the case, then mass weighted coordinates can be employed.

The second-order term in the nonadiabatic IVR propagator
contains the contributions from all trajectories with two hops.
It has a form similar to that of eq 17 with a summation over all
intermediates statesc, integrations over the two hopping times,
t1 and t2, with 0 < t1 < t2 < t, and two transition amplitudes,
one for the hop from statea to statec at t1 and one for the hop
from statec to stateb at t2. These transition amplitudes are
given by eq 18. Thenth-order term in eq 16 has summations
over all possible sequences of then - 1 intermediate states,
integrations over then hopping times, andn transition ampli-
tudes.

III. Numerical Implementation

In this section, a Monte Carlo procedure is described to
numerically implement the method discussed in the previous
section.25,57 Trajectories are started at some pointXi in the
asymptotic incoming region on a chosen adiabatic potential
energy surface with the appropriate initial momentum. The
trajectories are divided into steps of length∆X. At each step
the contribution to the nonhopping trajectory is

where the system is in quantum state one andXj (Xj+1) is the
point at the beginning (end) of the step. Here we allow for the
possibility that∆X ) Xj+1 - Xj is moderately large. In this
case, the integral in eq 19 is evaluated numerically by taking a
sufficient number of small substeps of widthδX within the
interval fromXj to Xj+1 so that it can be accurately calculated.
As is demonstrated below, the use of a relatively large∆X can
improve the numerical efficiency of the Monte Carlo procedure.
The nonhopping term in the wave function, eq 4, is obtained
by multiplying a11 by similar contributions from the other
intervals and by the semiclassical prefactor.

The contribution to the one hop integral eq 5 in which the
hop from surface one to surface two comes in thejth step is
obtained by multiplying the hopping amplitude for thejth step

by nonhopping amplitudes of the form of eq 19 from the other

steps and by the semiclassical prefactor. These nonhopping and
hopping amplitudes for thejth step,a11 anda21, can be employed
in a Monte Carlo procedure to decide whether the trajectory
should hop in this step. The probability for staying onW1 during
the step is taken to bep1 ) |a11|/Dj and the probability for
hopping toW2 is taken to bep2 ) |a21|/Dj, whereDj ) |a11| +
|a21| so thatp1 + p2 ) 1. If a computer generated pseudo-
random numberê is smaller thanp1, then the trajectory stays
on the same surface in this step. Ifê g p1, then the trajectory
hops in this step. In the discussion below, it is useful to express
the amplitude associated with each outcome for thejth step,
a11 or a21, as the probability for that outcome multiplied by a
modified amplitudecj. Thus,cj ) a21/p2 ) Dja21/|a21| if the
hopping outcome is selected, andcj ) a11/p1 ) Dja11/|a11| if it
is not.

If the Monte Carlo procedure selects the option to hop during
this step, then on the next step the amplitudes for staying on
the same surface and for hopping back toW1 are evaluated as
in eqs 19 and 20 andp1 andp2 are defined as before, except
that roles of the indices 1 and 2 are reversed andj is replaced
by j + 1. The procedure is repeated for each step along the
trajectory until a specified point in the final asymptotic region,
Xf, is reached. The contribution from the trajectory is obtained
by multiplying together thecj factors from all steps. The
contributions from all trajectories that end on each final surface
Wf are averaged and the result is multiplied by the appropriate
semiclassical prefactor [P1(Xi)/Pf(Xf)]1/2 to obtain the value of
the wave function onWf atXf. Because this is a time independent
stationary state problem, the probability of a particle coming
in on W1 and going out onWf, wheref can be 1 or 2, is given
by the ratio of the outgoing flux and the incoming flux; i.e.,p1f

) |ψf(Xf)|2Pf(Xf)/|ψ1(Xi)|2P1(Xi). Notice that thePf/P1 factor in
p1f cancels the contribution from the wave function prefactors.

This method offers a potentially highly accurate procedure
for obtaining transition probabilities. The contribution for each
trajectory contains the product of thecj factors. Because each
cj is proportional toDj, the trajectory contribution is proportional
to the product of theDj

If D can be much larger than 1, then there must be significant
cancellation between trajectory contributions to obtain the
correct value for the wave function. This cancellation can result
in very large sampling errors in a Monte Carlo calculation with
a fixed number of trajectories. In the remainder of this section,
techniques are discussed that can dramatically improve the
efficiency and reduce the statistical errors in Monte Carlo
calculations of this type.

A. Improved Step Amplitudes. Consider the simple curve
crossing problem with the diabatic potential surfacesV11

d )
tanh(X), V22

d ) -V11
d, and V12

d ) A12 exp(-X2/20). The
surfacesV11

d andV22
d cross atX ) 0. The nonadiabatic coupling

is η12 ) 〈æ2|dæ1/dX〉 ) dθ/dX, andθ ) 1/2 tan-1[2V12
d/(V11

d -
V22

d)]. If the magnitude of the diabatic couplingV12
d is relatively

small nearX ) 0, η12 is sharply peaked at the crossing point
with a width proportational toA12. As A12 goes to zero,η12

approaches (π/2)δ(X), whereδ(X) is the Dirac delta function.
This shows that the nonadiabatic coupling is often very large
near a point where the diabatic surfaces cross. If a large step
size was used, then the probability for hopping would be very
high. If this step was divided into two steps of half the size,
then there would still be a relatively large Monte Carlo
probability of a hop in each of the two smaller steps and there

D ) ∏
j

Dj (21)

τab
IVR(t1) ) -

(Paη + Pbη)

2m
ηab sgn(Pa‚ηab)

Ca(t1)

Cb(t1)
(18)

a11 ) exp[(i/p)∫Xj

Xj)1P1(y) dy] (19)

a21 ) ∫Xj

Xj+1dy τ12(y) exp[(i/p)∫Xj

y
P1 dz + (i/p)∫y

Xj+1P2 dz]
(20)
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would be a good probability that the Monte Carlo procedure
would choose to hop toW2 in the first step and back toW1 in
the second. This double hop option is not accounted for when
the larger step size is employed, and a very small step size would
have to be employed in the Monte Carlo method to obtain good
results.

A useful variation on the Monte Carlo procedure is obtained
by assuming the width of the step is sufficiently small that the
difference in the phase integral for trajectories that hop at
different points during the step is small and can be neglected.
If the phase for all trajectories that hop during the step is
evaluated as though all hops occur at the midpoint of the step,
then the integrals corresponding to one, two, three, ... hops
during the step can be performed analytically.22,57,58Summing
contributions from all nonhopping, one hop, two hop, ...
trajectories within this approximation, the amplitudes for the
different possible outcomes during the interval are found to be
ajj ) exp(iSjj/p) cos(γ), a21 ) exp(iS21/p) sin(γ), anda12 ) -
exp(iS12/p) sin(γ). The quantityγ is given by∫τ12(y) dy andSij

) ∫P(y) dy, where the integrations are over the step andP is
defined to bePj (Pi) for first (second) half of the step. The Monte
Carlo procedure can be performed as described above using
these improvedaij. Because these amplitudes include multihop
contributions, they can provide accurate results with relatively
large step sizes in regions of large coupling.

These improved amplitudes also have the appealing charac-
teristic that the matrix

is unitary. This feature is lacking in the original amplitudes. If
the incoming particle is on surfacej, then the component of
the wave function on surfacek at the end of theNth step is
given bymkj[Pj(Xi)/Pk(XN)]1/2, wheremkj is an element of

andA(i) is theA matrix for theith interval. The probability that
an incoming particle in statej will end in statek, pjk, is given
by the ratio of the outgoing and incoming fluxes, which yields
the result

If the A(i) are unity, thenM is unitary, and this guarantees that
the sum of the probabilities for the possible outcomes,pj1 +
pj2, is equal to 1, and conservation of probability is guaranteed.

It should be noted that the simple matrix multiplication
expression, eq 23, is only useful for one-dimensional problems,
because multidimensional cases are complicated by the fact that
the trajectories change direction at each hop. Therefore, the
Monte Carlo procedure must be used for multidimensional
problems. However, when various approximations on one-
dimensional problems are tested, the matrix multiplication
expression provides a very efficient way of exactly summing
the contributions from all possible trajectories. The comparison
of matrix multiplication results with exact quantum calculations
allows for the determination of the ultimate accuracy of various
semiclassical approximations, independent of statistical errors
introduced by a Monte Carlo calculation.

The improvedaij amplitudes for a single step, eqs 19 and
20, include the contributions from multihop terms. The phase
factors in these amplitudes are evaluated under the approxima-

tion that all hops occur at the midpoint of the step. A better
approximation can be developed as follows.57,58 The general
two-by-two unitary matrix can be expressed as

where R, â, γ, and δ are real constants. The higher order
approximation is obtained by expressing the phase in the single
hop, double hop, and higher hop integrals in the surface hopping
expansion for the wave function as a zeroth-order approximation
plus a correction term. The zeroth-order approximation treats
all hops as occurring at the same point,Xh, and phase correction
terms are treated as small. The exponentials of the phase
correction terms are then expanded in a Taylor series. The
parametersXh, R, â, γ, andδ are chosen so that each element
of eq 25 agrees with the exact result to third order in∆X. If Xh

is chosen so that the phases fora12 anda21 are the same as in
the earlier model, then57,58 R ) (S11 + S22)/2, δ ) S12 - R,

and

The P2 - P1 terms in eqs 26 and 27 arise from the expansion
of the phase correction terms.

This higher order expression forA has been tested on the
one-dimensional two state model problem shown in Figure 1,
where atomic units are employed and the particle has the mass
of a proton.57 At E ) 2.8, the quantum transition probability
for an incoming particle on lower surface ending on the upper
surface is found to bep12 ) 0.640. This quantum transition
probability is evaluate using a Runge-Kutta method to integrate
the two state Schrodinger equation. If a step size of∆X ) 0.1025
is employed in the matrix multiplication method, as described
by eqs 23 and 24, the semiclassical surface hopping method
givesp12 ) 0.659 if the simple form of theA matrix, eqs 19
and 20, is employed andp12 ) 0.641 if the higher order form
is used.57 If a step size is doubled to∆X ) 0.205, then the
higher orderA yields p12 ) 0.651, which is still of higher
accuracy than the results using the lower orderA and the smaller
step size.

If the Monte Carlo method described above had been used
in the calculations, then each trajectory would be multiplied by
the factor ofD, eq 21. The larger the value ofD, the more
cancellation there must be between contributions from different
trajectories to arrive at the correct value ofp12. The value ofD
for the calculation using the higher orderA and∆X ) 0.205 is
D ) 4.86, and the value ofD when the lower orderA is
employed and∆X ) 0.1025 isD ) 9.86.57 BecauseD is about
twice as large in the latter case, the relative statistical error in
a Monte Carlo calculation of the wave function would have to
be roughly half as great as it is in the higher order calculation
to obtain a comparably accurate result. Assuming that the
relative statistical error has aNtr

-1/2 dependence on the number
of trajectories sampled, then the use of the higher orderA matrix
is expected to cut the number of trajectories needed to achieve
a desired accuracy by about a factor of 4.

B. Selecting a Good Representation of the Quantum
States.An adiabatic representation of the quantum states of the

A ) (a11 a12

a21 a22
) (22)

M ) ∏
i)0

N

A(i) (23)

pjk ) |mkj|2 (24)

A ) eiR/p(eiâ/p cos(γ) -eiδ/p sin(γ)

eiδ/p sin(γ) e-iâ/p cos(γ) ) (25)

γ ) ∫Xj

Xj+1dy τ12(y) cos(1p∫Xh

y
dz [P2(z) - P1(z)]) (26)

â ) (S11 - S22)/2 - ∫Xj

Xj+1dy τ21(y)∫y

Xj+1dz τ21(z)∫y

z
ds

[P2(s) - P1(s)] (27)
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fast subsystem has been employed in the development of the
nonadiabatic semiclassical surface hopping wave functions and
propagators up to this point. The adiabatic representation of the
quantum states has the property that it diagonalizes the matrix
Vif ) 〈æi|Hf|æj〉, where Hf is the Hamiltonian for the fast
subsystem. The diabatic representation, on the other hand, is
defined such that the kinetic energy operator for the slow
subsystem is diagonal. In this case,Vif is no longer diagonal. It
is also possible to choose a representation that is neither
adiabatic nor diabatic. In a two state problem, this general
representation can still be defined in terms of the diabatic states
by eq 3, but without requiring thatθ(R) be chosen so that
〈æi|Hf|æj〉 is diagonal at eachR. The flexibility in the choice
of θ(R) can be used to improve the efficiency of the Monte
Carlo calculations. The semiclassical surface hopping wave
function or propagator can be modified to allow for a general
representation.59 The expressions for the propagator and wave
function remain as before, except that the nonadiabatic coupling,
ηif , is replaced with

In this expresion,Vif and ηif ) 〈æf|∇æi〉 depend on the
representation chosen. The energy conserving change in mo-
mentum at a hop is required to be in the direction parallel to
ηif.

Once the semiclassical surface hopping wave function and
propagator have been defined for a general representation, the
flexibility in the choice of the representation can be utilized to
reduce the average number of hops along a trajectory in the
Monte Carlo procedure. This is accomplished by choosing the
angleθ at each point along the trajectory so as to minimize the
integral of the magnitude of the coupling,|sif|, where this integral
is taken over the entire trajectory. The actual integral minimized
in calculations is59

ThePiPf factor in the denominator is employed because a hop
from Wi to Wf would have a factor ofPi

2 whereas a hop from
Wf to Wi would have a factor ofPf

2. Equation 29 accounts for
hops in both directions.

Consider the simple curve crossing example withV11
d )

-V22
d ) tanh(X), V12

d ) exp(-X2/20), andm ) 1836.2 au.
Results forG for the adiabatic, diabatic, and optimal representa-
tions are reported in Table 2 for different values ofE.59 The
value ofG for the diabatic and optimal representations depends
onE through thePiPf factor in eq 29. The result for the adiabatic
representation is independent ofE, becauseV12 ) 0 in this case.

For the model considered here with a single crossing ofV11
d

and V22
d, G ) π/2 in the adiabatic representation at allE. G

becomes smaller asE increases for both the diabatic representa-
tion and the optimal representation, reflecting the fact that the
diabatic representation provides a better description of the curve
crossing dynamics at higher energies (faster collisions). AtE
) 1.3, the optimal representation gives aG that is about a factor
of 0.8 times theG for the adiabatic representation. Thus, single
hop trajectories are roughly 0.8 times as likely if the optimal
representation is employed than if the adiabatic representation
is used. One would expectn-hop trajectories to be roughly (0.8)n

times as likely in the optimal representation. Thus, one would
expect a significant reduction in the importance of multihop
trajectories when optimal representation is employed. AsE
increases, the reduction inG obtained by using the optimal
representation is more pronounced. AtE ) 40, the value ofG
for the optimal representation is about one-third its value for
the adiabatic representation. Table 2 also presents results for
the transition probability for a particle coming in on the lower
adiabatic surface and ending on the upper adiabatic surface.59

The quantum transition probabilities are again calculated using
a Rugge-Kutta integration. The data confirm that the semiclas-
sical surface hopping method accurately reproduces the quantum
transition probability in all representations considered.

The method just described involves a nonlocal optimization
of θ(X). This was numerically accomplished by choosing a set
of equally spaced points on theX axis,X0, X1, X2, ..., XN, and
replacing the integral in eq 29 with a finite difference ap-
proximation.59 This discretizedG depends on the value ofθ at
each of theX points. The problem is then a multivariable
minimization problem. The results from calculations59 show that
the θ(X), W1(X), andW2(X) for the optimal representation are
essentially the same as for the adiabatic representation when
|X| . 0. However, asX approaches the crossing point at zero,
the representation crosses over to the diabatic representation
(i.e.,θ ) 0). The optimal representation is close to the adiabatic
representation at large|X|, because the coupling in the adiabatic
representation is smaller in this region than in the diabatic
representation. However, the adiabatic couplingηif

ad ) dθad/
dX becomes large at small|X|, and the optimal representation
avoids this large coupling by switching over to the diabatic
representation asX goes to zero.

The sharpness of the crossover depends on the energy and
theX dependence ofV12

d, V11
d, andV22

d in the region near the
crossing point. A simpler numerical approach is to use an
analytical switching function to haveθ(X) cross over fromθad(X)
far from the crossing point toθ ) 0 at the crossing point. A
hyperbolic tangent function,f(X) ) |tanh(X/w)|, is an example
of a simple crossover function that has been employed in
numerical studies.59 In these studies, the value of the crossover
width w is estimated at each point along the trajectory by taking
w to be the value that is optimal for the corresponding Landau-
Zener60,61 (i.e., constantV12 and constant dV11/dx - dV22/dx)
problem. In this approach,w is X dependent. The representation
obtained by this procedure is referred to as the approximation
optimal representation (AOR). The data presented in Table 2
show that the value ofG obtained when the AOR is employed
is not significantly higher than theG for the optimal representa-
tion (OR). (The slightly higher value ofG for the OR at lowE,
compared with the AOR, results from incomplete convergence
of the minimization problem involved in obtaining the OR.)

Figure 4 presents results57 for the transition probabilityp12

as a function of energy for the two crossing point model shown
in Figure 1. The solid line is the quantum transition probability

TABLE 2: Value of G and Semiclassicalp12 for the
Adiabatic (A), Diabatic (D), and Optimal (O)
Representations for Curve Crossing Problema

E G (A) G(D) G(O) G(AO) p12(A) p12(D) p12(O) p12(Q)

1.3 1.57 24.8 1.24 1.20 0.43 0.43 0.44 0.43
2.0 1.57 18.0 1.12 1.10 0.51 0.51 0.51 0.51
5.0 1.57 10.9 0.90 0.90 0.65 0.65 0.65 0.65

10.0 1.57 7.64 0.76 0.76 0.74 0.74 0.74 0.74
20.0 1.57 5.40 0.64 0.66 0.81 0.81 0.81 0.81
40.0 1.57 3.82 0.54 0.56 0.86 0.86 0.86 0.86

100.0 1.57 2.42 0.44 0.46 0.91 0.91 0.91 0.91
200.0 1.57 1.70 0.38 0.40 0.93 0.93 0.93 0.93

a The quantum (Q)p12 is given for comparison. The value ofG for
the approximate optimal (AO) representation is also given.

sif ) ηif + imVif/(2pPi) (28)

G ) ∫-∞

∞ [ηif
2 +

m2Vif
2

p2PiPf
]1/2

dX (29)
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and the dots are semiclassical surface hopping transition
probabilities obtained using the matrix multiplication method
with ∆X ) 0.005 125. The oscillations in the transition
probability result from the interference between trajectories that
hop between surfaces near the first crossing point and those
that hop between surfaces near the second crossing point. The
semiclassical surface hopping procedure clearly provides very
high accuracy results at all energies, and it accurately accounts
for the phase interference between the various hopping trajec-
tories.

Table 3 provides data on the accuracy of various calculations
using either the lower orderA matrix or the higher orderA
matrix, using either the adiabatic representation or the AOR,
and using different values of∆X.57 The results demonstrate that
for a given level of approximation forA and for a fixed value
of ∆X, the use of the AOR significantly reduced the value ofD
while maintaining similar accuracy. For example, when the
lower orderA is employed and∆X ) 0.05125,D ) 13.7 if the
adiabatic representation is used andD ) 4.87 if the AOR is
used. If the higher orderA is utilized and∆X ) 0.1025, then
D ) 8.88 using the adiabatic representation andD ) 3.78 when
the AOR is employed. These reductions inD are expected to
result in a significant improvement in the efficiency of the Monte
Carlo method due to a large reduction in the number of
trajectories that are needed to obtain a desired level of statistical
accuracy. All of the calculations just mentioned yield highly
accurate transition probabilities by the matrix multiplication
method. If the higher orderA and the AOR are used, then∆X
) 0.205 can be employed without loss of accuracy. In this case,
D ) 2.97. Thus, there is an overall reduction inD from 13.7 to
2.97 without loss of accuracy by increasing the order ofA and
using the AOR. Matrix multiplication calculations using the
higher orderA, the AOR, and∆X ) 0.205 provide energy

dependent results for which the agreement with the quantum
results is are not noticeably different from that shown in Figure
4.57

The statistical accuracy of Monte Carlo calculations atE )
2.8 using the semiclassical surface hopping procedure is also
considered in Table 3.57 A sample of 10 000 trajectories is used
in each calculation. The statistical errorσ is estimated for each
calculation by dividing the sample intoNs ) 100 subsamples
of 100 trajectories each. The error is then obtained as the root-
mean-squared deviation of the subaverages divided by square
root of Ns - 1. This analysis assumes that the statistical errors
in the Monte Carlo calculations scale as 1/Ntr

1/2, whereNtr is
the number of trajectories in the sample. This dependence has
been verified numerically. If the calculations are run with 100
subsamples of 1000 trajectories each, then the calculated errors
are about 1/101/2 smaller than the errors shown in Table 3. For
example, when this larger calculation is performed for the case
where∆X ) 0.1025, the AOR is used, and the higher orderA
is employed, then the calculatedσ is 0.0089, as compared with
0.029 for the corresponding calculation shown in Table 3. As
is clear from the data in Table 3, much larger trajectory samples
than those employed here are necessary to obtain accurate
transition probabilities whenD is relatively large, whereas the
statistical errors are quite smallσ ≈ 0.02 for the calculations
with small values ofD. It is interesting to compare the results
for the basic calculation (i.e., lower orderA, adiabatic repre-
sentation) with∆X ) 0.05125 with those for the most refined
calculation (i.e., higher orderA, AOR) with ∆X ) 0.205,
because these have similar accuracies when the matrix multi-
plication method is employed. It is found that the latter
calculation shows a 10-fold improvement in the statistical error
over the former. Becauseσ ∼ 1/Ntr

1/2, it is expected that a
calculation of around 1 000 000 trajectories would be required
to obtain the same level of accuracy using the basic method as
is obtained using the most refined calculation in a 10 000
trajectory calculation. A detailed analysis of the statistics of the
problem57 shows that the statistical error in the most refined
calculations reported in Table 3 is mainly due to fluctuations
in the number of trajectories ending in each state, rather than
from an inability to accurately account for the phase cancellation
between the trajectories ending in a given state.

The results obtained for this two state problem with two curve
crossing points have also obtained employing the widely used
Tully’s fewest switches (TFS) method.57 It is found that the
fewest switches model does not accurately account for the
interference between hopping trajectories, and this results in
inaccurate results for this problem. On the other hand, the
statistical errors in the TFS results are significantly smaller than
those found in even the most refined calculations considered in
Table 3. The reason for this is that the TFS approach provides
transition amplitudes for both surfaces, independent of the
surface on which the trajectory ends, whereas the surface
hopping method discussed in this work provides a nonzero
amplitude only for the final surface for the trajectory and a zero
amplitude for the other surface. This results in a smaller
fluctuation in the value of the amplitudes from trajectory to
trajectory for the TFS method.

Table 3 also includes the average number of hops per
trajectory for each calculation. As expected, increasing the size
of ∆X decreases the average number of hops, because multihop
contributions within a single step become more important and
these are incorporated into the amplitude for hopping or not
hopping during the step. The average number of hops per

Figure 4. Quantum (solid line) and semiclassical (dots) transition
probabilities are plotted as a function of energy for the model problem
corresponding to diabatic potential surfaces shown in Figure 1.

TABLE 3: Semiclassical Results for Curve Crossing
Problem in Figure 1 at E ) 2.8a

representation A ∆X pMM pMC σ D 〈hops〉

adiabatic lower order 0.005125 0.640 0.475 0.235 19.9 2.97
adiabatic lower order 0.05125 0.645 0.745 0.213 13.7 2.65
adiabatic lower order 0.1025 0.659 0.605 0.103 9.86 2.47
adiabatic higher order 0.1025 0.641 0.569 0.086 8.88 2.36
adiabatic higher order 0.205 0.651 0.619 0.045 4.86 1.95
AOR lower order 0.005125 0.637 0.594 0.041 4.87 1.57
AOR lower order 0.1025 0.638 0.649 0.031 4.06 1.43
AOR higher order 0.1025 0.636 0.644 0.029 3.78 1.36
AOR higher order 0.205 0.635 0.661 0.022 2.97 1.14

a pMM is matrix multiplicationp12. pMC is the value ofp12 from a
10 000 trajectory Monte Carlo calculation, andσ is the estimated Monte
Carlo statistical error. See text for definition of other quantities.
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trajectory also decreases when going from the adiabatic to the
approximate optimal representation, as anticipated.

IV. Concluding Remarks

The goal of the work described is the development of an
accurate and efficient semiclassical surface hopping method for
nonadiabatic problems. Starting from a formally exact surface
hopping expansion of the time independent wave function with
the WKB approximation as the zeroth-order term, it is possible
to obtain semiclassical surface hopping wave functions and
propagators for multistate problems in many dimensions. Both
primitive and uniform expressions have been obtained for the
time independent and the time dependent cases. Results for
model problems show that the method provides excellent results,
even in cases where it is essential to accurately account for
interference between trajectories that hop multiple times and at
different hopping points. A Monte Carlo implementation of the
surface hopping method is usually necessary for multidimen-
sional problems, and the cancellation that occurs between
contributions from different trajectories can lead to large Monte
Carlo statistical errors. This “sign problem” is a common
difficulty in quantum and semiclassical methods. Results shown
here demonstrate that this numerical problem can be signifi-
cantly reduced through the use of higher order amplitudes for
hopping and nonhopping paths during each step along the
trajectory, and by taking advantage of the flexibility in the choice
of the representation of the quantum states for the fast degrees
of freedom to minimize the integrated coupling between the
states.

The numerical data presented are restricted to one-dimen-
sional time independent model problems. Monte Carlo calcula-
tions using the surface hopping method have also been
performed for one and two-dimensional time dependent prob-
lems, yielding very accurate results.25,62,63An example is shown
in Figure 5. Future work will focus on the extension of the
techniques to improve the efficiency of the Monte Carlo
calculations discussed here to time dependent and multidimen-
sional problems. Multidimensional problems have the added
feature that they require a Monte Carlo selection of the initial
conditions for trajectories. This phase space sampling can
contribute to the sign problem. Various integral conditioning

techniques have been employed to reduce the phase interference
problems for single surface Monte Carlo calculations.64-67 It
will, in all likelihood, be important to use all of these techniques
in tandem to obtain a generally accurate and efficient semiclas-
sical surface hopping method for multidimensional problems.
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